Blood flow in small tubes: quantifying the transition to the non-continuum regime.

نویسندگان

  • Huan Lei
  • Dmitry A Fedosov
  • Bruce Caswell
  • George Em Karniadakis
چکیده

In small vessels blood is usually treated as a Newtonian fluid down to diameters of ~200 μm. We investigate the flow of red blood cell (RBC) suspensions driven through small tubes (diameters 10-150 μm) in the range marking the transition from arterioles and venules to the largest capillary vessels. The results of the simulations combined with previous simulations of uniform shear flow and experimental data show that for diameters less than ~100 μm the suspension's stress cannot be described as a continuum, even a heterogeneous one. We employ the dissipative particle dynamics (DPD) model, which has been successfully used to predict human blood bulk viscosity in homogeneous shear flow. In tube flow the cross-stream stress gradient induces an inhomogeneous distribution of RBCs featuring a centreline cell density peak, and a cell-free layer (CFL) next to the wall. For a neutrally buoyant suspension the imposed linear shear-stress distribution together with the differentiable velocity distribution allow the calculation of the local viscosity across the tube section. The viscosity across the section as a function of the strain rate is found to be essentially independent of tube size for the larger diameters and is determined by the local haematocrit (H) and shear rate. Other RBC properties such as asphericity, deformation, and cell-flow orientation exhibit similar dependence for the larger tube diameters. As the tube size decreases below ~100 μm in diameter, the viscosity in the central region departs from the large-tube similarity function of the shear rate, since H increases significantly towards the centreline. The dependence of shear stress on tube size, in addition to the expected local shear rate and local haematocrit, implies that blood flow in small tubes cannot be described as a heterogeneous continuum. Based on the analysis of the DPD simulations and on available experimental results, we propose a simple velocity-slip model that can be used in conjunction with continuum-based simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Burnett Equations to Derive an Analytical Solution to Pressure-Driven Gas Flow and Heat Transfer in Micro-Couette Flow

The aim of the present study is deriving an analytical solution to incompressible thermal flow in a micro-Couette geometry in the presence of a pressure gradient using Burnett equations with first- and second-order slip boundary conditions. The lower plate of the micro-Couette structure is stationary, whereas the upper plate moves at a constant velocity. Non-dimensional axial velocity and tempe...

متن کامل

PERFORMANCE MODEL AND ANALYSIS OF BLOOD FLOW IN SMALL VESSELS WITH MAGNETIC EFFECTS

In this paper consider a two-fluid model consisting of a core region of suspension of all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in small diameter tubes with effects of magnetic. The analytical results obtained in the proposed model for effective...

متن کامل

Two Phase Heat Transfer Characteristics in a Vertical Small Diameter Tube at Sub Atmospheric Pressure

Two-phase heat transfer is experimentally examined through vertical small diameter tubes, D =1.45 and 2.8 mm using water under a pressure of 50 to 81 kPa and a natural circulation condition. The pool boiling correlation by Stephan-Abdelsalam and the thermosyphon boiling correlation by Imura, et al. predict the measured experimental data in the 2.8 mm tube with an error of -30%. A large heat tra...

متن کامل

Effect of Inserting Coiled Wires in Tubes on the Fluid Flow and Heat Transfer Performance of Nanofluids

In the present study, numerical study of Al2O3-water nanofluid flow in different coiled wire inserted tubes are performed to investigate the effects of inserting coiled wires in tubes on the fluid dynamic and heat transfer performance ofv nanofluids. The numerical simulations of nanofluids are performed using two phase mixture model. The flow regime and the wall boundary conditions are assumed ...

متن کامل

Mathematical Modeling of Micropolar Blood Flow in a Stenosed Artery Under the Body Acceleration and Magnetic Field

Blood flow is modeled as non-Newtonian micropolar fluid. The non-linear governing equations of continuum and momentum in the cylindrical coordinate are being discretized using a finite difference approach and have been solved iteratively ,through Crank-Nicolson method. The blood velocity distribution, volumetric flow rate and Resistance to blood flow at the stenosis throat are computed for vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of fluid mechanics

دوره 722  شماره 

صفحات  -

تاریخ انتشار 2013